CS 4530 & CS 5500
Software Engineering

Lecture 10.4: Continuous Delivery

Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences
© 2021, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe how continuous delivery helps to catch errors sooner in a
product’s lifecycle

* Describe the distinction between a DevOps and “traditional”
developer/operator mentality

* Describe strategies for performing quality-assurance on software as
and after it is delivered

Cost to Fix a Defect Over Time

Rough estimate

Today: How do we catch defects just at
the inflection point of this curve?

Defect Cost

Deploying New Code

The best that we can hope for?

“If stuff blows up It affects a very
small percentage of people”

Instagram cofounder and CTO Mike Krieger

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

Continuous Delivery

“Faster Is safer”: Key values of continuous delivery

* Release frequently, in small batches
 Maintain key performance indicators to evaluate the impact of updates
 Phase roll-outs

 Evaluate business impact of new features

Staging Environments

Enabling Continuous Delivery

* As software gets more complex with more dependencies, it's impossible to
simulate the whole thing when testing

* |dea: Deploy to a complete production-like environment, but don't have
everyone use it

 Examples:

« “Eat your own dogfood”

 Beta/Alpha testers

| ower risk if a problem occurs in staging than in production

Test-Stage-Production

Continuous Delivery in Action

Developer |
Environments Beta/Dogfooding User Requests

Testing Staging Environment Production Environment
Environment

Revisions are “promoted” towards production

—_———)

Q/A takes place in each stage (including production!)

Operations Responsibility

DevOps in a slide

 Once we deploy, someone has to monitor software, make sure it’s running
OK, no bugs, etc
« Assume 3 environments:

e Test, Staging, Production

 Whose job is it?

Developers Operators
\Waterfall Test Staging Production
Agile Test Staging Production
DevOps | Test Staging FProduction Production

DevOps Values

One team owns changes "from cradle to grave"

* You are the support person for your changes, regardless of platform

 Example: Facebook mobile teams (hon-DevOps)

Desktop/Web Android 0S5

Engineering Teams
Group messages Group messages
Messages
Chat Chat
. Events , .
Upcoming Events Upcoming Events
Photos .
. Birthdays Birthdays
Android
. Photo Albums Photo Aloums
10S Photo Picker Photo Picker

Product Experts Platform Experts

DevOps Values

One team owns changes "from cradle to grave"

* You are the support person for your changes, regardless of platform

 Example: Facebook mobile teams (DevOps)

Desktop/Web Android 0S
Engi ing T
ngineering feams Group messages Group messages Group messages
Messages
Chat Chat Chat
. Events , , .
Upcoming Events Upcoming Events Upcoming Events
. Photos . . .
Birthdays Birthdays Birthdays
Androi
. aroig Photo Albums Photo Albums Photo Albums
0S Photo Picker Photo Picker Photo Picker

Product Experts

Deployment Pipeline

With staging environment

| Deploy to . M . Deploy to .

Staging onitor Production Monitor

Develop

Release Pipelines
How quickly is my change deployed?

 Even if you are deploying every day, you still have some latency
* A new feature | develop today won't be released today

 But, a new feature | develop today can begin the release pipeline today
(minimizes risk)

 Release Engineer: gatekeeper who decides when something is ready to go
out, oversees the actual deployment process

Deployment Example: Facebook.com
Pre-2016

Developers working in their own branch

~1 week of development

master branch

All changes that survived stabilizing

3 days 4 days
weeky | QEEEND QRN

All changes from week

that are ready for release release branch

O T ——
O ——
O e ——
O R ——

production 3x Daily
Your change doesn't go out
unless you're there that day at “‘When in doubt back out”

that time to support it!

Deployment Example: Facebook.com

Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

“Our main goal was to make sure that the new

system made people’s experience better — or
at the very least, didn’t make it worse. After
almost exactly a year of planning and
development, over the course of three days in
April 2017 we enabled 100 percent of our
production web servers to run code
deployed directly from master.”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Deployment Example: Facebook.com

Post-2016: Truly continuous releases from master branch

100% production
anomaly

employees

Master

| Sandeastletestputamaton | | | [| L LWL PHE P P L L] e

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

A/B Deployments with Canaries

Mitigating risk In continuous delivery

Old Version

Web Application Database
server server server
Web Application Database
Some users
061 server server Server

New Version

Most users
(95%)

Monitor both:
But minimize impact of problems in new version

Monitoring

The last step In continuous deployment: track metrics

 Hardware
* \oltages, temperatures, fan speeds, component health
« OS
* Memory usage, swap usage, disk space, CPU load
* Middleware
 Memory, thread/db connection pools, connections, response time
* Applications

* Business transactions, conversion rate, status of 3rd party components

Monitoring

Automatically detecting irregular behavior at Netflix

SPS Legend: M Experiment Ml Control

PROD:US-EAST-1 o & W ' =8 Log PROD:US-EAST-1 o & [' =8 Log
SPS Server Successes (License Requests) SPS Client Successes (Startplays)
5.0 - [l -
- 20.0 4
= B
404 ‘ |
— |
. 15.0- L
3.04 __—/1—
‘ 10.0 4
2.0+ —
1.0+ 504
0.0- I I | I I I I I 0.0- I — I I | I I I
10: 27 10: 30 10:33 10: 36 10:39 10: 42 10: 45 10: 48 10: 27 10: 30 10:33 10: 36 10:39 10: 42 10: 45 10: 48

MONITORING!

https://www.youtube.com/watch?v=gyzymLlIj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

When things go wrong

 Automated monitoring systems can notify “on-call” staff of a problem

* [riage & escalation

X Critical Systems - All Hands On Deck Escalation & v
iggered

&4 Prim f Primary Dev [*) Primary Su
es tes

4 Seco % Seco ev [Secondary Support
escalates after 15 minut es

V Alert

aC

es tes

Monitoring Dashboards

localhost Current Load

Host Status Summary
Up Down Unreachable Pending

Fni’ﬁﬂﬁﬁﬁ@qmwﬂuuubadAmmnnGMkd N
1 Nagios triggered an incident) a r ,
at 15:21 - PagerDuty (7

Bt Updeted: J044-C4-13 13 14304

1
Deployment #426232 of jari to ga Service Status Summary
Ok Warning Unknown Critical Pending
@ Heaven Failed deploying jari to qa. 16:00 20000 15. Jan 04:00 0& 00 1200 2% s 1 Tl
eaven Started dm,' ian’ qa Unhandled Problems Al
VH ng to 0 oad! W losd5 BB load)5 | 51 53 333
15:20 * Heaven (7 m.oy .m “’i #ailure a5 Updeled: J015-GL-13 13 43:04
Disk Usage
Most Service % Utilization Details
uild 297 was successful
v '-i : localbost Root Parttion 75.0% DISK QK - free space: / 1516 MB (21% inode=B823%):
jariBuild: #297 Result: SUCCESS URL: ScotsSarver T 69.4% D1\ - total: 232.28 Gb - used: 151.71 Gb (65%) - free 71,17 Gb (31%)
htps.//cit Viob/jari/297/ ChangesSampo P Drive C: Disk E— C:\ - total: 452.96 Gb - used: 131.70 Gb (29%) - free 321.26 Gb
A Usace o (71%)
Verkasalo 212d3ad Use RSS item description inthread ! Disk Usage 27.0% DISK OK - free space: / 56392 MB (71% node=97%):
A C' 1518 - Jenklns a 'a" o JOﬂklﬂ. g exchange. nagivs.org / Disk Usage 0.0% DISK OK - Iree space: / 73482 MB (93% nude=98%):

e Lpleled MAld-Ui-li L) S0 A

master at flowdock/jari updated

il OsQu a9feb33 Merge pull request #165 from flowd.

B RedBulli 212d3ad Use RSS item description in thre, Status Grid

B RedBulli 2788500 Create ActiveJob that polls RSS . @ o2 c0500 @e

17 » mess . 2 $152.160.5.23 Y Y
Y e mon Pes Gl @152.1083.41 0850000055858/ 00080008000 0000RR0RRROIRR0BBES!
E088008800088 8858088888888 808888808880000888:
@sbccom YTy
P IPC-UPS-27 & w

@ rcadenagioslocal @E

@Uusiness Frooess ... ’

.C‘H‘f‘!fﬂ_r‘-"ﬁ_ NagDs l.".o‘-.‘

@exthangeraocc P PSPPI OOES
‘f remall ‘

@o2eway.nagos.ocsl PP P

@coogle cor ... 2

This work is licensed under a Creative Commons
Attribution-ShareAlike license

* This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

e You are free to:

e Share — copy and redistribute the material in any medium or format
 Adapt — remix, transform, and build upon the material
e for any purpose, even commercially.

* Under the following terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

e ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

