
Jonathan Bell, John Boyland, Mitch Wand 
Khoury College of Computer Sciences 
© 2021, released under CC BY-SA

CS 4530 & CS 5500 
Software Engineering
Lecture 10.4: Continuous Delivery

http://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe how continuous delivery helps to catch errors sooner in a 
product’s lifecycle


• Describe the distinction between a DevOps and “traditional” 
developer/operator mentality


• Describe strategies for performing quality-assurance on software as 
and after it is delivered



Cost to Fix a Defect Over Time
Rough estimate

De
fe

ct
 C

os
t

Concept

Design

Development

Local Testing
Commit/Code Review
Integration

Production
Late-Stage Production

Today: How do we catch defects just at 
the inflection point of this curve?



Deploying New Code
The best that we can hope for?

“If stuff blows up it affects a very 
small percentage of people”

Instagram cofounder and CTO Mike Krieger

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram


Continuous Delivery
“Faster is safer”: Key values of continuous delivery

• Release frequently, in small batches


• Maintain key performance indicators to evaluate the impact of updates


• Phase roll-outs


• Evaluate business impact of new features



Staging Environments
Enabling Continuous Delivery

• As software gets more complex with more dependencies, it's impossible to 
simulate the whole thing when testing


• Idea: Deploy to a complete production-like environment, but don't have 
everyone use it


• Examples:


• “Eat your own dogfood”


• Beta/Alpha testers


• Lower risk if a problem occurs in staging than in production



Test-Stage-Production
Continuous Delivery in Action

Testing 
Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests
Developer 

Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)



Operations Responsibility 
DevOps in a slide

• Once we deploy, someone has to monitor software, make sure it’s running 
OK, no bugs, etc


• Assume 3 environments:


• Test, Staging, Production


• Whose job is it?
Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

StagingTest ProductionProduction



DevOps Values
One team owns changes "from cradle to grave"

• You are the support person for your changes, regardless of platform


• Example: Facebook mobile teams (non-DevOps)

Group messages


Chat


Upcoming Events


Birthdays


Photo Albums


Photo Picker

Android

Group messages


Chat


Upcoming Events


Birthdays


Photo Albums


Photo Picker

iOS

Messages

Events

Photos

Android

iOS

Engineering Teams Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts Platform Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker



DevOps Values
One team owns changes "from cradle to grave"

Group messages


Chat


Upcoming Events


Birthdays


Photo Albums


Photo Picker

Android

Group messages


Chat


Upcoming Events


Birthdays


Photo Albums


Photo Picker

iOS

Messages

Events

Photos

Android

iOS

Engineering Teams Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

• You are the support person for your changes, regardless of platform


• Example: Facebook mobile teams (DevOps)



Deployment Pipeline
With staging environment

Develop Build Test Deploy to 
Production MonitorDeploy to 

Staging Monitor



Release Pipelines
How quickly is my change deployed?

• Even if you are deploying every day, you still have some latency


• A new feature I develop today won't be released today


• But, a new feature I develop today can begin the release pipeline today 
(minimizes risk)


• Release Engineer: gatekeeper who decides when something is ready to go 
out, oversees the actual deployment process



Deployment Example: Facebook.com
Pre-2016

~1 week of development

3x Daily

Stabilize

release branch
Weekly

3 days

All changes from week

that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out 
unless you’re there that day at 

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production
“When in doubt back out”



Deployment Example: Facebook.com
Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

“Our main goal was to make sure that the new 
system made people’s experience better — or 
at the very least, didn’t make it worse. After 
almost exactly a year of planning and 
development, over the course of three days in 
April 2017 we enabled 100 percent of our 
production web servers to run code 
deployed directly from master.”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


Deployment Example: Facebook.com
Post-2016: Truly continuous releases from master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


A/B Deployments with Canaries
Mitigating risk in continuous delivery

Monitor both:

But minimize impact of problems in new version



Monitoring
The last step in continuous deployment: track metrics

• Hardware


• Voltages, temperatures, fan speeds, component health


• OS


• Memory usage, swap usage, disk space, CPU load


• Middleware


• Memory, thread/db connection pools, connections, response time


• Applications


• Business transactions, conversion rate, status of 3rd party components



Monitoring
Automatically detecting irregular behavior at Netflix

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag


When things go wrong

• Automated monitoring systems can notify “on-call” staff of a problem


• Triage & escalation



Monitoring Dashboards



This work is licensed under a Creative Commons 
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy 
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ 


• You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• for any purpose, even commercially.


• Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. 

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your 
use. 


• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under 
the same license as the original. 


• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others 
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

